ECCMID 2022 Poster 1128

Helio S. Sader, M.D., Ph.D. JMI Laboratories 345 Beaver Kreek Centre, Suite A North Liberty, Iowa 52317 Phone: (319) 665-3370 Fax: (319) 665-3371 Email: helio-sader@jmilabs.com

Lefamulin Activity against a Contemporary Global Collection of Staphylococcus aureus (SENTRY 2020–2021)

Susanne Paukner¹, S.J.R. Arends², Steven P. Gelone³, Rodrigo E. Mendes², Helio S. Sader²

¹Nabriva Therapeutics, GmbH, Vienna, Austria; ²JMI Laboratories, North Liberty, IA, USA; ³Nabriva Therapeutics US Inc., Fort Washington, PA, USA

INTRODUCTION

- Lefamulin is a first-in-class, oral and IV pleuromutilin antibiotic approved in the United States (US), Europe (EU), and Canada for the treatment of community-acquired pneumonia (CAP) in adults caused by susceptible typical and atypical bacterial organisms, including *S. aureus*.¹
- Lefamulin inhibits bacterial protein synthesis via a unique mechanism of action and its potency against *S. aureus* has been well established *in vitro*, *in vivo*, and in phase 3 clinical trials in patients with CAP and *S. aureus* identified as the causative organism at baseline.^{2–5}
- Lefamulin has further demonstrated potent efficacy in a phase 2 clinical trial for the treatment of patients with ABSSSI (>80% cellulitis or abscess with cellulitis) caused by gram-positive pathogens including MRSA and methicillin-susceptible *S. aureus* that was comparable to that of vancomycin.⁶
 Although there are various antibiotic treatment options available, *S. aureus*, and particularly methicillin-resistant *S. aureus* (MRSA), remains a major cause of healthcare-associated infections in Europe and is identified by the CDC as a "serious threat" (Figure 1).⁷⁻¹¹
 The need for alternative treatment options is driven by resistance, adverse events, contraindicated drug class, or concerns of renal toxicity.
 We evaluated the *in vitro* activity of lefamulin against *S. aureus* collected globally via the SENTRY Program in 2020–2021.

CONCLUSIONS

- Lefamulin demonstrated potent *in vitro* antibacterial activity against *S. aureus* including MRSA collected from patients worldwide regardless of geographic region and resistance phenotype.
- Lefamulin represents a valuable empiric treatment option for ambulatory and hospitalized patients with CAP, including those infected with *S. aureus*.
- Further studies are warranted to investigate the efficacy of lefamulin in other *S. aureus* infections.

MATERIALS AND METHODS

- A total of 5,028 *Staphylococcus aureus* were collected from 85 medical centres in 2020–2021 as follows:
 - EU: 1,829 isolates from 35 medical centres located in 18 countries
 - US: 2,543 isolates from 31 medical centres
 - Asia-Pacific region (APAC): 373 isolates from 12 medical centres in 7 countries
 - Latin America (LATAM): 283 isolates from 7 medical centres in 5 countries
- Isolates were from infections of the respiratory tract (22.2%, including CABP [9.9%]), bloodstream (25.6%), skin and soft tissue (44.9%), and other body sites (7.3%).
- Susceptibility testing was performed by CLSI broth microdilution reference methods and EUCAST breakpoints were applied.^{12, 13}

RESULTS

- Lefamulin was highly active against the S. aureus collection across all geographic regions (MIC_{50/90}, 0.06/0.12 mg/L), with 99.7% of isolates inhibited at ≤0.25 mg/L, consistent with the susceptible breakpoint published by EUCAST and CLSI (Table 1 and Figures 2 to 4).
- Limited variation, no more than 1 log₂ dilution, was observed in lefamulin MIC_{50/90} values for all regions (data not shown).
- Lefamulin was active against methicillin-resistant (R) S. aureus (MRSA), with an MIC_{50/90} of 0.06/0.12 mg/L and 99.3% susceptibility (Table 1 and Figures 3 and 4).
- Lefamulin activity was unaffected by other resistance phenotypes, such as (Table 1 and Figure 4):
 - Azithromycin-nonsusceptible (NS): MIC_{50/90} of 0.06/0.12 mg/L and 99.7%S
 - Ceftaroline-R: MIC_{50/90} of 0.12/0.25 mg/L and 98.5%S
 - Clindamycin-NS: MIC_{50/90} of 0.06/0.12 mg/L and 98.0%S
 - Doxycycline-NS: MIC_{50/90} of 0.06/0.12 mg/L and 98.5%S
 Gentamicin-R: MIC_{50/90} of 0.06/0.12 mg/L and 99.5%S

Figure 2. Antimicrobial susceptibility of *S. aureus* collected worldwide (2020–2021)

Abbreviations: AZI, azithromycin; DOX, doxycycline; MOX, moxifloxacin; LZD, linezolid; TMP-SMX, trimethoprim-sulfamethoxazole; CPT, ceftaroline; VAN, vancomycin.

Figure 3. Antimicrobial susceptibility of MRSA isolates collected worldwide (2020–2021)

- Levofloxacin-R: MIC_{50/90} of 0.06/0.12 mg/L and 99.1%S
- Trimethoprim-sulfamethoxazole-NS: MIC_{50/90} of 0.06/0.12 mg/L and 100.0%S
- MRSA susceptibilities to azithromycin, ceftaroline, and moxifloxacin were 24.2%, 90.5%, and 38.9%, respectively.

Figure 1. MRSA rates in countries surveyed by the SENTRY Program (*n*=13,911 isolates; 2020–2021)

Lefamulin AZI DOX MOX LZD TMP-SMX CPT VAN Antimicrobial agent

Abbreviations: AZI, azithromycin; DOX, doxycycline; MOX, moxifloxacin; LZD, linezolid; TMP-SMX, trimethoprim-sulfamethoxazole; CPT, ceftaroline; VAN, vancomycin.

Figure 4. Lefamulin activity (cumulative MIC distributions) against S. aureus resistant subsets

Abbreviations: MRSA, methicillin-resistant *S. aureus*; AZI, azithromycin; NS, nonsusceptible per EUCAST; LEV, levofloxacin; R, resistant per EUCAST.

Resistant subset (no.)	MIC _{50/90} in mg/L (% Susceptible)					
	Lefamulin	Azithromycin	Doxycycline	Moxifloxacin	Linezolid	Vancomycin
All S. aureus (5,028)	0.06 / 0.12 (99.7)	1 / >8 (58.7)	≤0.06 / 0.25 (96.1)	≤0.06 / 2 (79.6)	1 / 2 (100.0)	1 / 1 (100.0)
MRSA (1,371)	0.06 / 0.12 (99.3)	>8 / >8 (24.2)	≤0.06 / 1 (91.8)	2 / >4 (38.9)	1 / 2 (100.0)	1 / 1 (100.0)
Azithromycin-NS (2,076)	0.06 / 0.12 (99.7)	>8 / >8 (0.0)	≤0.06 / 0.5 (93.9)	≤0.06 / >4 (60.8)	1 / 2 (100.0)	1 / 1 (100.0)
Clindamycin-NS (441)	0.06 / 0.12 (98.0)	>8 / >8 (1.4)	≤0.06 / 8 (83.4)	4 / >4 (23.4)	1 / 2 (100.0)	1 / 1 (100.0)
Ceftaroline-R (130)	0.12 / 0.25 (98.5)	>8 / >8 (5.4)	0.12 / 8 (84.6)	>4 / >4 (0.8)	1 / 2 (100.0)	1 / 1 (100.0)
Doxycycline-NS (198)	0.06 / 0.12 (98.5)	>8 / >8 (36.4)	4 / 8 (0.0)	0.12 / >4 (55.1)	1 / 2 (100.0)	1 / 1 (100.0)
Gentamicin-R (196)	0.06 / 0.12 (99.5)	>8 / >8 (45.4)	≤0.06 / 4 (84.2)	≤0.06 / >4 (61.5)	1 / 2 (100.0)	1 / 1 (100.0)
Levofloxacin-R (1,031)	0.06 / 0.12 (99.1)	>8 / >8 (21.0)	≤0.06 / 1 (91.4)	2 / >4 (0.5)	1 / 2 (100.0)	1 / 1 (100.0)
TMP-SMX-NS (54)	0.06 / 0.12 (100.0)	>8 / >8 (25.9)	≤0.06 / 8 (64.8)	2 / >4 (13.0)	1 / 1 (100.0)	1 / 1 (100.0)

Table 1. Antimicrobial susceptibility of *S. aureus* stratified by resistance phenotype

Abbreviations: MRSA, methicillin-resistant S. aureus; NS, nonsusceptible per EUCAST criteria; R, resistant per EUCAST criteria; TMP-SMX, trimethoprim-sulfamethoxazole.

REFERENCES

- (1) Xenleta[™] (2019). (lefamulin). Full Prescribing Information. Nabriva Therapeutics US, Inc. Available at https://www.xenleta.com/. Accessed 24 March 2022.
- (2) File TM, Goldberg L, Das A, et al. (2019). Efficacy and safety of intravenous-to-oral lefamulin, a pleuromutilin antibiotic, for the treatment of community-acquired bacterial pneumonia: The Phase III Lefamulin Evaluation Against Pneumonia (LEAP 1) trial. *Clin Infect Dis* 69: 1856–1867.
- (3) Alexander E, Goldberg L, Das AF, et al. (2019). Oral lefamulin vs moxifloxacin for early clinical response among adults with communityacquired bacterial pneumonia: The LEAP 2 randomized clinical trial. JAMA 322: 1661–1671.
- (4) Paukner S, Goldberg L, Alexander E, et al. (2021). Pooled Microbiological Findings and Efficacy Outcomes by Pathogen in Adults with Community-Acquired Bacterial Pneumonia from the Lefamulin Evaluation Against Pneumonia (LEAP) 1 and LEAP 2 Phase 3 Trials of Lefamulin Versus Moxifloxacin. J Glob Antimicrob Resist. S2213-7165(21)00245-9 [In press].
- (5) Paukner S, Mariano D, Das AF, et al. (2021). Lefamulin in patients with community-acquired bacterial pneumonia caused by atypical respiratory pathogens: Pooled results from two Phase 3 trials. *Antibiotics (Basel)* 10: 1489.
- (6) Prince WT, Ivezic-Schoenfeld Z, Lell C, et al. Phase II clinical study of BC-3781, a pleuromutilin antibiotic, in treatment of patients with acute bacterial skin and skin structure infections. *Antimicrobial agents and chemotherapy.* 2013;57(5):2087-2094.
- (7) Welte T, Torres A, Nathwani D (2012). Clinical and economic burden of community-acquired pneumonia among adults in Europe. *Thorax* 67: 71–79.
- (8) Peyrani P, Mandell L, Torres A, et al. (2019). The burden of community-acquired bacterial pneumonia in the era of antibiotic resistance. *Expert Rev Respir Med* 13: 139–152.
- (9) ECDC. Methicillin-resistant Staphylococcus aureus (MRSA). https://www.ecdc.europa.eu/en/publications-data/directory-guidance -prevention-and-control/prevention-and-control-infections-0
- (10) CDC. Antibiotic resistance threats in the United States (2019). https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats -report-508.pdf
- (11) Antimicrobial resistance in the EU/EEA (EARS-Net). Annual epidemiological report for 2019. Available at: https://www.ecdc.europa.eu/sites/default/files/documents/surveillance-antimicrobial-resistance-Europe-2019.pdf
- (12) Clinical and Laboratory Standards Institute (2018). M07Ed11E. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved Standard—11th edition. Wayne, PA, USA.
- (13) EUCAST (2021). Breakpoint tables for interpretation of MICs and zone diameters. Version 11.0, January 2021. European Committee on Antimicrobial Susceptibility Testing.

Acknowledgements

This study was supported by Nabriva Therapeutics. JMI Laboratories received compensation fees for services related to preparing this poster.