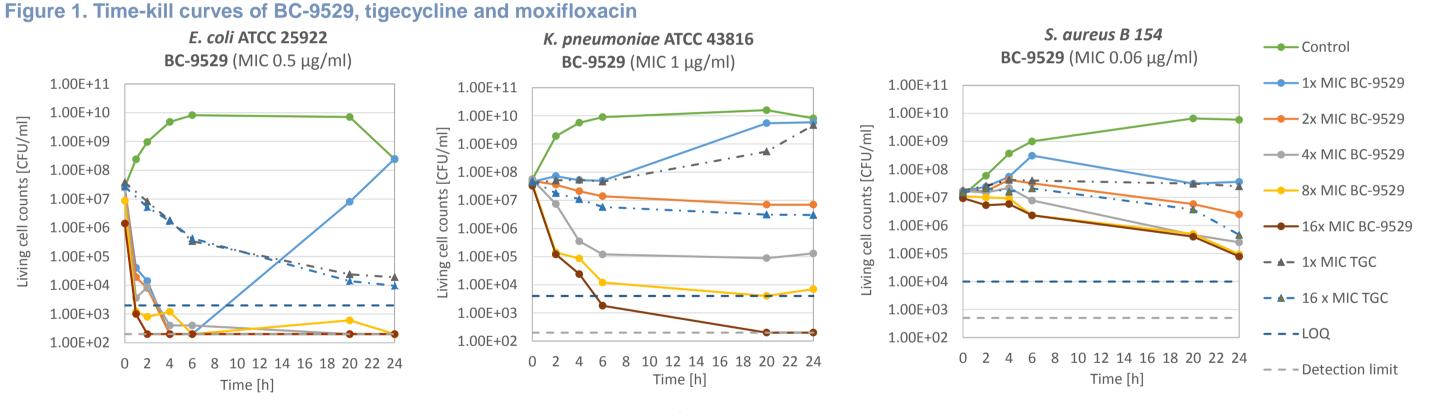
S. Paukner, H. Kollmann, R. Riedl and Z. Ivezic-Schoenfeld Nabriva Therapeutics AG, Vienna, Austria

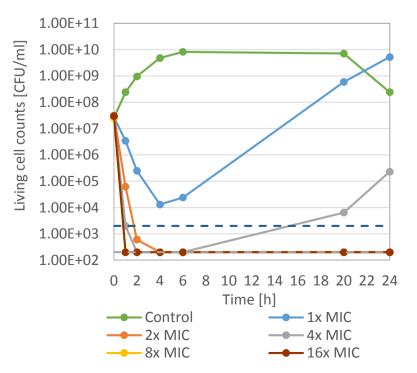
ABSTRACT

Objective: Extended spectrum pleuromutilins (ESP) are the second generation of pleuromutilin antibiotics which exhibit potent activity against Gram-negative pathogens like Escherichia coli, Klebsiella pneumoniae and other Enterobacteriaceae along with staphylococci, streptococci, Haemophilus influenzae and atypical respiratory pathogens. The coverage of highly resistant pathogens including carbapenem-resistant and ESBL producing Enterobacteriaceae, MDR Streptococcus pneumoniae and MRSA makes ESP an attractive treatment option in the fight against the dramatic increase and rapid spread of multi-drug resistances.¹⁻⁴ This study investigated the antibacterial activity and bactericidal properties of the novel investigative ESP derivative BC-9529 against E. coli, K. pneumoniae and S. aureus.

Methods: The antibacterial activity was determined by broth microdilution (CLSI, M7-A9) against *E. coli* (n = 32) including ESBL (TEM, CTX-M) producing strains (78.1 %), K. pneumoniae (n = 24; 25.0 % ESBL producing) and *S. aureus* (CA-MRSA, n = 20; 100% macrolide-resistant). Kill curves were determined for three *E. coli*, one *K. pneumoniae* and one S. aureus strain by broth macrodilution in CAMHB for BC-9529 at 1- to 16-fold MIC in comparison to moxifloxacin and tigecycline.


Results: The novel ESP derivative BC-9529 showed potent antibacterial activity against the tested E. coli (MIC_{50/90.} 0.5/1 µg/mL), K. pneumoniae (MIC_{50/90}, 1/2 µg/mL), and S. aureus (MIC_{50/90}, 0.06/0.06 µg/mL). It was fully active against TEM, CTX-M, NDM-1 or KPC producing strains which were largely resistant to ß-lactam antibiotics, ciprofloxacin and doxycycline.

Furthermore, BC-9529 demonstrated bactericidal activity against E. coli and K. pneumoniae whereas it appeared to be bacteriostatic against S. aureus. Living cell counts of E. coli (including a CTX-M 15 producing strain) were reduced by at least 4 \log_{10} at \geq 2-fold MIC (corresponding to \geq 1 µg/mL) within 24 h, that of *K*. pneumoniae by > 3 log₁₀ at \geq 8-fold MIC. Killing of E. coli and K. pneumoniae was generally rapid (within 6 h of incubation) and dependent on time and concentration. Against S. aureus BC-9529 was bacteriostatic with living cell count reductions of ~1-2 log₁₀ within 24 h. Overall, the potent bactericidal effect of BC-9529 on E. coli was comparable to that of moxifloxacin. Killing of *E. coli* by tigecycline was slower and time-dependent ($T_{max} = 24$ h). Against K. pneumoniae and S. aureus tigecycline exhibited a bacteriostatic effect (> 1.5 \log_{10} within 24 h).


Conclusion: The novel ESP BC-9529 demonstrated good antibacterial activity against highly resistant bacterial pathogens including ESBL and carbapenemase-producing Enterobacteriaceae and CA-MRSA. The high antibacterial and bactericidal activity against both, E. coli and *K. pneumoniae* are attractive qualities in the overall potent antibacterial profile, which might lead to potential future treatment options against serious infections caused by these pathogens.

RESULTS

- BC-9529 demonstrated potent antibacte isolates of E. coli, K. pneumoniae and MRS/
- The MIC₉₀ against E. coli and K. pneumoniae including a high proportion of resistant isolates was 1 µg/mL and 2 µg/mL, which was as active as tigecycline (MIC₉₀, 0.5 and 4 μ g/mL, respectively). Against S. aureus (MRSA) BC-9529 was with a MIC₉₀ of 0.06 μ g/mL even more potent.
- BC-9529 was bactericidal against E. coli and K. pneumoniae with living cell count reductions of > 3 \log_{10} within 6 h at $\ge 2x$ MIC for *E. coli* ATCC29522 and E. coli D120. Against the CTX-M producing E. coli B1098 and K. pneumoniae ATCC 43816 killing by BC-9529 was slower and more dependent on the drug concentration (Figure 1 and Table 2).

E. coli ATCC 25922 **Moxifloxacin** (MIC 0.03 µg/ml)

Kill curves of the Novel Extended-Spectrum Pleuromutilin Antibiotic BC-9529

erial	activity	against	clinical
SA (Ta	able 1).		

RESULTS continued

- Overall, killing of Enterobacteriaceae by BC-9529 was rapid and dependent on time and BC-9529 concentration. Reduction of living cell counts by BC-9529 was more pronounced and faster than by tigecycline and as fast as moxifloxacin known to act bactericidal.
- Against S. aureus BC-9529 was bacteriostatic with living cell count reductions of approx. 2 log₁₀ within 24 h. This was comparable to the effect of tigecycline.
- To investigate the reason for the bactericidal activity, initial membrane depolarization and permeabilisation experiments were performed using Disc₃(5) and Syto9/propidium iodide dyes. Results showed that BC-9529 did not depolarize the E. coli membrane and indicated an effect of BC-9529 on the membrane permeability of *E. coli*.

Effect of BC-9529, tigecycline and moxifloxacin on the living cell counts Table 2.

		MIC	Change of Living Cell Counts at t=24 h compared to t=0 [Δlog ₁₀ CFU/mL]					
Compound	Strain	[µg/mL]	Growth control	1x MIC	2x MIC	4x MIC	8x MIC	16x MIC
BC-9529	E. coli ATCC 25922	0.5	0.97	<u>0.98 a</u>	<u>>-5.13</u>	<u>>-5.10</u>	<u>>4.63</u>	<u>>-3.85</u>
	<i>E. coli</i> B1098; CTX-M15	0.5	2.25	1.90 ^b	<u>-4.35</u>	<u>>-5.32</u>	<u>>-5.32</u>	<u>-4.71</u>
	E. coli D120	0.5	1.39	1.67 ^c	<u>>-5.06</u>	<u>-3.15</u>	<u>>-4.59</u>	<u>>-3.18</u>
	K. pneumoniae ATCC 43816	1	2.17	2.11	-0.85	-2.62	<u>-3.75</u>	<u>>-5.22</u>
	S. aureus ATCC 25923	0.06	2.69	0.33	-0.83	-1.83	-2.07	-2.08
Moxifloxacin	E. coli ATCC 25922	0.03	0.97	2.28 ^d	<u>>-5.19</u>	-2.05	<u>>-5.10</u>	<u>>-5.23</u>
Tigecycline	E. coli ATCC 25922	0.25	1.26	<u>-3.30</u>	<u>-3.30</u>	<u>-3.55</u>	<u>-3.38</u>	<u>-3.45</u>
	K. pneumoniae ATCC 43816	1	2.17	2.05	-0.24	-0.58	-0.66	-1.21
	S. aureus ATCC 25923	0.25	2.69	0.17	0.08	-0.29	-1.32	-1.51

Bold, reduction of living cell counts compared to t = 0 h; **Bold and underlined**, reduction of living cell counts > 3 log₁₀ ^{a-d}, Regrowth at t=24 h; maximum CFU reduction for ^a >-5.11 log₁₀ at t=4 h, ^b -2.15 log₁₀ at t=6 h, ^c -1.54 log₁₀ at t=6 h and ^d -3.32 log₁₀ at t=4 h.

25th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID), Copenhagen, Denmark; 25-28 April 2015

Table 1.

Species

E. coli^a

K. pneumoniae

(n = 24)

S. aureus, MRS

(n = 20)

^a, *E. coli*: 66 % (21/32) ESBL producers; 28 % (9/32) CTX-M ß-lactamase producers , *K. pneumoniae*: 25 % (6/24) ESBL producers °, CA-MRSA: 75% USA300, 25% USA400

CONCLUSIONS

- Enterobacteriaceae.

REFERENCES

(1) Paukner S., Strickmann D., Ivezic-Schoenfeld Z. Extended Spectrum Pleuromutilins: Modeof-Action Studies. 24th ECCMID, Barcelona, E. Poster P1681 (2014)

(2) Paukner S., Kollmann H., Thirring K., Heilmayer W., Ivezic-Schoenfeld Z. Antibacterial in *vitro* activity of novel extended spectrum pleuromutilins against Gram-positive and –negative bacterial pathogens. 24th ECCMID, Barcelona, E. Poster P1678 (2014)

(3) Wicha W.W., Ivezic-Schoenfeld Z. In vivo activity of extended spectrum pleuromutilins in murine sepsis model. 24th ECCMID, Barcelona, E. Poster P1680 (2014)

(4) Wicha W.W., Paukner S., Strickmann D.B., Thirring K., Kollmann H., Heilmayer W., Ivezic-Schoenfeld Z. Efficacy of novel ESP against E. coli in vitro and in vivo. 25th ECCMID, Copenhagen, DK. E-poster EV0208 (2015)

ACKNOWLEDGMENTS

The authors gratefully acknowledge the practical work of A. Gruss, C. Muska, A. Bischinger, E. Fischer and B. Kappes.

Antibacterial activity of BC-9529 and comparators

		BC-9529	Ciprofloxacin	Tigecycline
	MIC ₅₀	0.5	16	0.25
	MIC ₉₀	1	>16	0.5
e ^b	MIC ₅₀	1	0.03	2
	MIC ₉₀	2	2	4
5A c	MIC ₅₀	0.06	1	0.06
	MIC ₉₀	0.06	4	0.06

The novel ESP derivative BC-9529 demonstrated potent antibacterial activity against Gram-negative and Gram-positive bacterial pathogens which cause serious infections and show an alarming trend in resistance development.

BC-9529 displayed rapid bactericidal activity against *E. coli* and K. pneumoniae. Against S. aureus the ESP BC-9529 remained bacteriostatic similar to the 1st generation pleuromutilins.

This bactericidal activity of ESP represents an interesting feature for the treatment of bacterial infections caused by

Additional studies will be conducted to further explore the mode-ofaction of this novel generation of pleuromutilin antibiotics.