Population Pharmacokinetic Analysis for Lefamulin Using Data From Healthy Volunteers and Infected Patients

Nikolas J. Onufruk,1 Harish Ganesan,1 Wolfgang W. Wicha,2 Steven P. Gelone,3 Sujata M. Bhavnani,1 Christopher M. Rubino1
1Institute for Clinical Pharmacodynamics, Inc., Schenectady, NY, USA; 2Nabriva Therapeutics GmbH, Vienna, Austria; 3Nabriva Therapeutics US, Inc., King of Prussia, PA, USA

INTRODUCTION & PURPOSE

- Lefamulin (LEF), a first-in-class pleuromutilin antibiotic, is being developed for the treatment of community-acquired pneumonia (CAP) and acute bacterial skin and skin structure infections (ABSSSI).
- A previously developed population pharmacokinetic (PK) model based on phase 1 healthy volunteer and phase 1 ABSSSI patient data following intravenous (iv) and oral administration revealed complex disposition, with the following elements:
 - A 3-compartment distribution,
 - First-order elimination,
 - Saturable plasma protein binding,
 - Biphasic absorption following oral dosing,
 - Intrinsic disposition was estimated as 79.4 L/h (41.4%) in phase 3 patients receiving the same 150 mg IV dosing regimen.

OBJECTIVES

- To refine a previously developed Lefamulin PK model, incorporating data from 3 phase 2 and 3 phase 3 efficacy trials and ABSSSI patient data with CAP.
- To identify patient factors associated with the interindividual variability in Lefamulin disposition.
- To enable exposure in patients enrolled in phase 2 ABSSSI and phase 3 CAP studies of LEF.

METHODS

Data

- Clinical studies were employed to refine the previously developed Lefamulin population PK model.
 - Phase 1 healthy volunteer studies with complete covariate information evaluating iv and po disposition following iv and oral doses of 150 mg iv (n=622).
 - Phase 2 ABSSSI patients and healthy volunteers.
 - Phase 3 phase 2 ABSSSI patients and healthy volunteers.
- The final covariate model was subjected to a prediction-corrected visual predictive check.
- Summary statistics of the nonparametric bootstrap suggested an unbiased fit of the pooled data.

RESULTS

- The final post hoc analysis dataset comprised 4,020 LEF plasma concentrations from 849 individuals (Figure 3).
- 32.9% of plasma samples were collected in the included phase 1 studies.
- 62.4% of plasma samples were collected in the pooled phase 3-2 CAP studies.
- The final covariate model was subjected to a prediction-corrected visual predictive check (Figure 3).
- Summary statistics of the nonparametric bootstrap suggested an unbiased fit of the pooled data.

CONCLUSIONS

- The developed Lefamulin PK model is unbiased and capable of capturing the within-patient and interpatient variability in Lefamulin disposition observed in phase 1–3 clinical trials.
- Several statistically significant covariate relationships were identified, but only that of study phase and systemic clearance was considered clinically relevant.
- Average LEF Day 1 free-thru-1, Cmax was 1.74-fold higher in phase 3 patients treated with CAP versus 2-phase studies patients with ABSSSI.
- The developed model will be useful for the subsequent evaluation of pharmacokinetic/pharmacodynamic properties and relationships and for simulations to support LEF dose justification.