Pharmacokinetics-Pharmacodynamics (PK-PD) Target Attainment Analyses to Support ZTI-01 (Fosfomycin for Injection) Dose Selection for Patients with Complicated Urinary Tract Infections (cUTI)


1Inst. for Clinical Pharmacodynamics Inc., Schenectady, NY
2Wisconsin Univ., Madison, WI
3JMI Lab., N. Liberty, IA
4Zavante Therapeutics, Inc., San Diego, CA

Background: ZTI-01, fosfomycin for injection, has in vitro activity against Gram -positive and -negative organisms, including carbapenem-resistant Enterobacteriaceae. ZTI-01 is currently in Phase 2/3 development for the treatment of patients with cUTI. PK-PD target attainment analyses were undertaken to provide support for the ZTI-01 dosing regimen to treat patients with cUTI.

Methods: Using parameter estimates from a population PK model (3-compartment model with zero-order input and 1st-order elimination), total-drug plasma concentration-time profiles were generated for 6000 simulated patients with varying creatinine clearance (CLcr, mL/min/1.73m2). Simulated patients received ZTI-01 according to CLcr: 6 g IV q8h for > 50 mL/min/1.73 m2, 4 g IV q8h for > 40 to 50 mL/min/1.73 m2, 6 g IV loading followed by 3 g IV q8h for > 30 to 40 mL/min/1.73 m2, and 6 g IV load followed by 5 g IV q24h for > 10 to 30 mL/min/1.73 m2. Day 1 AUC0–24 was calculated. Percent probabilities of PK-PD target attainment by MIC and overall (i.e., weighted over the MIC distribution for 1091 Enterobacteriaceae isolates from the USA) were determined using median total-drug plasma AUC:MIC ratio targets associated with net bacterial stasis and a 1-log10 CFU reduction from baseline at 24 h from a neutropenic murine-thigh infection model for Enterobacteriaceae (19.1 and 41.6, respectively).

Results: Percent probabilities of attaining PK-PD targets associated with net bacterial stasis (Figure 1) and a 1-log10 CFU reduction were ≥98.3% at a MIC=64 mg/L and ≥97.3% at a MIC=32 mg/L, respectively, across renal function groups. These MIC values were 1 to 2 dilutions higher than the MIC90 of 16 mg/L for Enterobacteriaceae. Overall percent probabilities of PK-PD target attainment for each target were 97.8 and 95.5%, respectively.

Conclusions: Together with clinical outcome data, these data will provide support for ZTI-01 dosing recommendations and fosfomycin susceptibility breakpoints for Enterobacteriaceae.
Keywords: fosfomycin, pharmacokinetics/pharmacodynamics, ZTI-01

Sub-track: AAID03 Antimicrobial pharmacokinetics, pharmacodynamics and general pharmacology