Cardiac Safety in Adults With Community-Acquired Bacterial Pneumonia Treated With Lefamulin or Moxifloxacin: Analysis of Lefamulin Evaluation Against Pneumonia (LEAP) 1 and LEAP 2 Study Results

Borge Darpo,1 Anita F. Das,2 Daniel S. Stein,3 Jennifer Schranz,3 Steven P. Gelone3

1ERT, Rochester, NY, USA; 2Das Consulting, Guerneville, CA, USA; 3Nabriva Therapeutics US, Inc., King of Prussia, PA, USA

INTRODUCTION & PURPOSE

Lefamulin (LEF) is a pleuromutilin antibiotic approved for intravenous and oral use in adults with community-acquired bacterial pneumonia (CABP); intravenous preparations may also be used for adults with moderate-to-severe community-acquired respiratory tract infections (CARTI) or hospital-acquired pneumonia (HAP) in the inpatient setting; LEF is a dihydropeptidyl transferase (DHP) inhibitor (DHPase)

• The micromolar mode of action at a distinct binding to a highly conserved ribosomal region may confer a broad spectrum of antibacterial activity and suggest a low potential for development of resistance in other major antibiotic classes

• Metabolites and fluoroquinolones, antibiotic classes commonly used to treat CABP, are associated with QT prolongation and torsade de pointes

• LEF has a prolonged elimination half-life of 68–72 hours, consistent with drug accumulation

• LEF has catheter-related veno-occlusive nonclinical toxicity, with results suggesting a potential for QT prolongation

METHODS

Study Design and Patients

• Both studies were prospective, randomized, double-blind, double-layer, phase 3 trials in adults infected with CABP

• In LEAP 1, patients with Pneumonia Outcomes Research Team (PORT) risk class I (n = 370) MOX (n = 367) and LEAP 2 (n = 738) patients in LEAP 1 (PORT risk class II) and 736 patients in LEAP 2 (n = 370) MOX (n = 367) and LEAP 2 Study Results

• In LEAP 1, a higher proportion of patients had a history of arrhythmia in the LEF treatment group compared with the MOX treatment group

• In both studies, no LEF-treated patients and 1 MOX-treated patient (LEAP 2) had a serious adverse event related to QT prolongation

• LEF has potent in vitro activity against pathogens that commonly cause CABP and cytokine-mediated antimicrobial resistance in the peptidyl transferase center

• The largest least square mean (SE) change in QTcF from baseline to postbaseline was observed on Day 3 postdose in LEAP 1 (13.6 [1.2] and 16.4 [1.2] msec with LEF and MOX, respectively) and on Day 3/4 postdose (339 –6.6 [12.8] 348 –8.4 [13.8] msec with LEF and MOX, respectively)

• In LEAP 1, a higher proportion of patients had heart rate increases of ≥60 msec in the LEF group compared with the MOX group

• In the standardized Medical Dictionary for Regulatory Activities query of “torsade de pointes,” no LEF-treated patients and 1 MOX-treated patient (LEAP 2) had a serious adverse event related to torsade de pointes

• In both studies, patients treated with LEF had statistically significant, clinically meaningful decreases from baseline in a number of patient-reported outcomes (PROs) compared with patients treated with MOX

• The only noteworthy change in vital signs was the increase in heart rate in both the LEF and MOX treatment groups, which is consistent with recovery after the infection

• Consistent with nonclinical and phase 1 findings, LEF caused mild QT prolongation in some patients with CABP

• Mild prolongation of the QT interval was seen with LEF at clinically relevant doses in the phase 3 CABP program, but the observed effect was smaller than that observed with the comparator, MOX

• Given the small effect, LEF is unlikely to pose a clinically significant risk of ventricular proarrhythmia with short-term or long-term use (e.g., LEF is not recommended to be given to patients on other drugs with known effects on QT interval)

RESULTS

Table 1. Demographics and Baseline Characteristics (Intention-to-Treat Population)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>LEAP 1</th>
<th>LEAP 2</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>68.4 (15.6)</td>
<td>68.4 (15.3)</td>
<td>0.91</td>
</tr>
<tr>
<td>Baseline mean heart rate, bpm</td>
<td>76 (11)</td>
<td>76 (10)</td>
<td>0.72</td>
</tr>
<tr>
<td>Furosamide use (%)</td>
<td>0.9%</td>
<td>0.9%</td>
<td>0.97</td>
</tr>
<tr>
<td>Baseline QTcF, msec</td>
<td>375 ± 11.4</td>
<td>376 ± 11.5</td>
<td>0.61</td>
</tr>
<tr>
<td>Baseline QT, msec</td>
<td>367 ± 11.7</td>
<td>368 ± 11.7</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Table 2. Change From Baseline in Heart Rate (Safety Analysis Set)

<table>
<thead>
<tr>
<th>Time Point*</th>
<th>Baseline mean (SD)</th>
<th>Day 3/4 postdose mean (SD)</th>
<th>Day 1 postdose mean (SD)</th>
<th>Day 3/4 predose mean (SD)</th>
<th>Change from Baseline (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1 predose</td>
<td>77.1 ± 11.5</td>
<td>78.6 ± 11.9</td>
<td>77.3 ± 11.7</td>
<td>77.1 ± 11.7</td>
<td>–2.2 ± 11.7</td>
</tr>
<tr>
<td>Day 3/4 predose</td>
<td>74.1 ± 11.4</td>
<td>74.9 ± 11.5</td>
<td>73.7 ± 11.5</td>
<td>73.2 ± 11.6</td>
<td>–2.8 ± 11.5</td>
</tr>
<tr>
<td>Day 1 postdose</td>
<td>77.3 ± 11.7</td>
<td>78.6 ± 11.8</td>
<td>77.3 ± 11.4</td>
<td>76.7 ± 11.4</td>
<td>–2.7 ± 11.8</td>
</tr>
<tr>
<td>Day 3/4 postdose</td>
<td>74.9 ± 11.5</td>
<td>75.2 ± 11.4</td>
<td>73.9 ± 11.4</td>
<td>73.3 ± 11.4</td>
<td>–1.5 ± 11.4</td>
</tr>
</tbody>
</table>

Table 3. Change From Baseline in QTcF (Safety Analysis Set)

<table>
<thead>
<tr>
<th>Time Point*</th>
<th>Baseline mean (SD)</th>
<th>Day 3/4 postdose mean (SD)</th>
<th>Day 1 postdose mean (SD)</th>
<th>Day 3/4 predose mean (SD)</th>
<th>Change from Baseline (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1 predose</td>
<td>375 ± 11.4</td>
<td>375 ± 11.4</td>
<td>375 ± 11.4</td>
<td>375 ± 11.4</td>
<td>0 ± 11.4</td>
</tr>
<tr>
<td>Day 3/4 predose</td>
<td>373 ± 11.3</td>
<td>381 ± 11.2</td>
<td>372 ± 11.7</td>
<td>372 ± 11.7</td>
<td>8 ± 11.3</td>
</tr>
<tr>
<td>Day 1 postdose</td>
<td>374 ± 11.2</td>
<td>382 ± 11.1</td>
<td>372 ± 11.4</td>
<td>372 ± 11.4</td>
<td>8 ± 11.3</td>
</tr>
<tr>
<td>Day 3/4 postdose</td>
<td>372 ± 11.1</td>
<td>381 ± 11.2</td>
<td>371 ± 11.3</td>
<td>371 ± 11.3</td>
<td>9 ± 11.3</td>
</tr>
</tbody>
</table>

Table 4. QTCF Prolongation Trigger (Pooled Safety Analysis Set)

- **Baseline QTcF increase \(\geq 30 \) msec (61.6% vs 58.2%)**
- **Baseline QTcF increase \(\leq 60 \) msec (27.8% vs 30.5%)**
- **Baseline QTcF increase \(>60 \) to \(\leq 120 \) msec (2.6% vs 1.9%)**
- **Baseline QTcF increase \(>120 \) msec (6.0% vs 8.1%)**

Figure 1. Proportions of Patients With Postbaseline QTcF Increases (A) and Values of Interest (B) (Safety Analysis Set)

CONCLUSIONS

- The only noteworthy change in vital signs was the expected increase in heart rate in both the LEF and MOX treatment groups, which is consistent with recovery after the infection

- Consistent with nonclinical and phase 1 findings, LEF caused mild QT prolongation in some patients with CABP

- Mild prolongation of the QT interval was seen with LEF at clinically relevant doses in the phase 3 CABP program, but the observed effect was smaller than that observed with the comparator, MOX

- Given the small effect, LEF is unlikely to pose a clinically significant risk of ventricular proarrhythmia with short-term or long-term use (e.g., LEF is not recommended to be given to patients on other drugs with known effects on QT interval)

REFERENCES

- Ixora Darpo, Full Publishing Information, Nabriva Therapeutics US, Inc., King of Prussia, PA, USA. 1

Acknowledgments

Funding for development of this manuscript was provided by Nabriva Therapeutics US LLC, Bedford, MA

Disclosures

Boston Pharmaceuticals, Cempra, ContraFect, InterumTx, Nabriva Therapeutics, Paratek, Tetraphase, and ZymoGenetics are employees of/stockholders in Nabriva Therapeutics.

*Presented by